S-300 / SA-10 Grumble - Military History (2024)

TheS-300(NATO reporting nameSA-10 Grumble) is a series of initially Soviet and later Russian long rangesurface-to-air missilesystems produced byNPO Almaz, based on the initial S-300P version. The S-300 system was developed to defend against aircraft andcruise missilesfor theSoviet Air Defence Forces. Subsequent variations were developed tointercept ballistic missiles.

The S-300 system was first deployed by theSoviet Unionin 1979, designed for the air defence of large industrial and administrative facilities, military bases and control of airspace against enemy strike aircraft. The system is fully automated, though manual observation and operation are also possible.

Components may be near the central command post, or as distant as 40km. Each radar provides target designation for the central command post. The command post compares the data received from the targeting radars up to 80km apart, filtering false targets, a difficult task at such great distances.

The central command post features both active andpassivetarget detection modes.

The project-managing developer of the S-300 isAlmaz-Antey. S-300 usesmissiles developed by both MKB “Fakel” and NPO Novator design bureaus(separate government corporations, previously named “OKB-2” and “OKB-8”).

The S-300 is regarded as one of the most potentanti-aircraft missile systemscurrently fielded.

An evolved version of the S-300 system is theS-400(NATO reporting nameSA-21 Growler), which entered limited service in 2004.

Variations and upgrades

Serial production started in 1975.

The tests have been completed in 1978 (P) and 1983 (V + 1987 for anti-ballistic V).

Numerous versions have since emerged with differentmissiles, improvedradars, better resistance tocountermeasures, longer range and better capability against short-range ballistic missiles or targets flying at very low altitude. There are currently three main variations.

S-300P

Land-based S-300P (SA-10)

TheS-300P(transliterated fromRussianС-300П,NATO reporting nameSA-10 Grumble) is the original version of the S-300 system which became operational in 1978.

In 1987, over 80 of these sites were active, mainly in the area around Moscow. ThePsuffix stand forPVO-Strany(country air defence system). An S-300PT unit consists of a36D6(NATO reporting nameTIN SHIELD) surveillance radar, a 30N6 (FLAP LID) fire control system and 5P85-1 launch vehicles. The 5P85-1 vehicle is asemi-trailer truck. Usually a 76N6 (CLAM SHELL) low altitude detection radar is also a part of the unit.

This system broke substantial new ground, including the use of apassive electronically scanned arrayradar and multiple engagements on the sameFire-control system(FCS). Nevertheless, it had some limitations. It took over one hour to set up this semi-mobile system for firing and the hot vertical launch method employed scorched theTEL.

It was originally intended to fit the Track Via Missile (TVM) guidance system onto this model. However, the TVM system had problems tracking targets below 500m. Rather than accept the limitation, the Soviets decided that the tracking of low altitude targets was a must and decided to use a pure command-guidance system until the TVM head was ready.

This allowed the minimum engagement altitude to be set at 25m.

Improvements to the S-300P have resulted in several major subversions for both the internal and the export market. The S-300PT-1 and S-300PT-1A (SA-10b/c) are incremental upgrades of the original S300PT system. They introduce the 5V55KD missile and thecold launchmethod thereafter employed. Time to readiness was reduced to 30 minutes andtrajectory optimizationsallowed the 5V55KD to reach a range of 75km.

TheS-300PS/S-300PM(RussianС-300ПC/С-300ПМ, NATO reporting nameSA-10d/e) was introduced in 1985 and is the only version thought to have been fitted with a nuclear warhead. This model saw the introduction of the modern TEL and mobile radar and command-post vehicles that were all based on the MAZ-7910 8×8 truck.

This model also featured the new 5V55R missiles which increased maximum engagement range to 90km (56mi) and introduced a terminal semi-active radar homing (SARH) guidance mode. The surveillance radar of these systems was designated30N6. Also introduced with this version was the distinction between self-propelled and towed TELs. The towed TEL is designated 5P85T. Mobile TELs were the 5P85S and 5P85D. The 5P85D was a “slave” TEL, being controlled by a 5P85S “master” TEL. The “master” TEL is identifiable thanks to the large equipment container behind the cabin; in the “slave” TEL this area is not enclosed and is used for cable or spare tyre storage.

The next modernisation, called theS-300PMU(RussianС-300ПМУ, US DoD designationSA-10f) was introduced in 1992 for the export market and featured the upgraded 5V55U missile which still utilised the intermediate SARH terminal guidance method and smaller warhead of the 5V55R but increased the engagement envelope to give this missile roughly the same range and altitude capabilities as the newer 48N6 missile (max. range 150km/93mi). The radars were also upgraded, with the surveillance radar for the S-300PMU being designated64N6(BIG BIRD) and the illumination and guidance radar being designated 30N6-1 in theGRAU index.

  • S-300P total produced: 3000 launchers, 28,000 missiles for the S-300P

S-300PMU-1/2 (SA-20)

S-300PMU-2 64N6E2 acquisition radar (part of 83M6E2 command post)

TheS-300PMU-1(Russian:С-300ПМУ-1, US DoD designationSA-20A, NATO reporting nameSA-20 Gargoyle) was also introduced in 1993 with the new and larger 48N6 missiles for the first time in a land-based system and introduced all the same performance improvements from the S300FM version including the increased speed, range,TVMguidance andABMcapability.

The warhead is slightly smaller than the naval version at 143kg (315lb). This version also saw the introduction of the new and more capable 30N6E TOMB STONE radar.

The S-300PMU-1 was introduced in 1993 and for the first time introduces several different kinds of missiles in a single system. In addition to the 5V55R and 48N6E missiles the S-300PMU-1 can utilise two new missiles, the 9M96E1 and 9M96E2. Both are significantly smaller than the previous missiles at 330 and 420kg (730 and 930lb) respectively) and carry smaller 24kg (53lb) warhead. The 9M96E1 has an engagement range of 1–40km (0.62–25mi) and the 9M96E2 of 1–120km (0.62–75mi). They are still carried 4 per TEL. Rather than just relying on aerodynamic fins for manoeuvring, they use a gas-dynamic system which allows them to have an excellentprobability of kill(Pk) despite the much smaller warhead. The Pkis estimated at 0.7 against a tactical ballistic missile for either missile. The S-300PMU-1 typically uses the 83M6E command and control system, although it is also compatible with the older Baikal-1E and Senezh-M1E CCS command and control systems. The 83M6E system incorporates the64N6E(BIG BIRD) surveillance/detection radar. The fire control/illumination and guidance radar used is the 30N6E(1), optionally matched with a 76N6 low altitude detection radar and a 96L6E all altitude detection radar. The 83M6E command and control system can control up to 12 TELs, both the self-propelled 5P85SE vehicle and the 5P85TE towed launchers. Generally support vehicles are also included, such as the 40V6M tow vehicle, intended for lifting of the antenna post.

China is building its own version of the S-300PMU-1, calledHQ-10.

S-300PMU-2 vehicles. From left to right: 64N6E2 detection radar, 54K6E2 command post and 5P85 TEL.

TheS-300PMU-2Favourite(Russian:С-300ПМУ-2 Фаворит–Favourite, DoD designationSA-20B), introduced in 1997 (presented ready 1996), is an upgrade to the S-300PMU-1 with range extended once again to 195km (121mi) with the introduction of the 48N6E2 missile. This system is apparently capable against not justshort range ballistic missiles, but now alsomedium range ballistic missiles. It uses the 83M6E2 command and control system, consisting of the 54K6E2 command post vehicle and the64N6E2surveillance/detection radar. It employs the 30N6E2 fire control/illumination and guidance radar. Like the S-300PMU-1, 12 TELs can be controlled, with any mix of 5P85SE2 self-propelled and 5P85TE2 trailer launchers. Optionally it can make use of the 96L6E all altitude detection radar and 76N6 low altitude detection radar.

S-300F

Sea-based S-300F (SA-N-6)

TheS-300FFort(RussianС-300Ф Форт, DoD designationSA-N-6,Fsuffix forFlot, Russian forfleet) was introduced in 1984 as the original ship-based (naval) version of the S-300P system developed byAltairwith the new 5V55RM missile with range extended to 7–90km (4.3–56mi; 3.8–49nmi) and maximum target speed up toMach4 while engagement altitude was reduced to 25–25,000m (82–82,021ft). The naval version utilises the TOP SAIL or TOP STEER, TOP PAIR and 3R41 Volna (TOP DOME) radar and utilises command guidance with a terminalsemi-active radar homing(SARH) mode. Its first installation and sea trials were on aKara class cruiserand it is also installed onSlava class cruisersandKirov class battlecruisers. It is stored in eight (Slava) or twelve (Kirov) 8-missile rotary launchers below decks. The export version of this system is known asRif(RussianРиф–reef). TheNATOname, found also in colloquial use, is“Grumble”.

Sea-based S-300FM (SA-N-20)

TheS-300FMFort-M(RussianС-300ФМ, DoD designationSA-N-20) is another naval version of the system, installed only on theKirov-class cruiserPyotr Velikiy, and introduced the new 48N6 missile. It was introduced in 1990 and increased missile speed to approximately Mach 6 for a maximum target engagement speed of up to Mach 8.5, increased the warhead size to 150kg (330lb) and increased the engagement range yet again to 5–150km (3.1–93mi) as well as opening the altitude envelope to 10–27km (6.2–16.8mi). The new missiles also introduced the ultimatetrack-via-missileguidance method and brought with it the ability to intercept short-range ballistic missiles. This system makes use of the TOMB STONE MOD rather than TOP DOME radar. The export version is called theRif-M. Two Rif-M systems were purchased by China in 2002 and installed on theType 051Cair-defence guided missile destroyers.

Both naval versions are believed to include a secondaryinfraredterminal seeker, similar to the newer USStandard missilesystem, probably to reduce the system’s vulnerability to saturation. This also allows the missile to engage contacts over theradar horizon, such as warships or sea-skimming anti-ship missiles.

S-300V (SA-12)

In service 1984.

S-300V (SA-12a Gladiator)

The 9K81S-300VAntey-300(Russian9К81 С-300В Антей-300– named afterAntaeus, NATO reporting nameSA-12 Gladiator/Giant) varies from the other designs in the series. This complex is not part of the C-300, including is designed by another developer.

It was built byAnteyrather than Almaz, and its 9M82 and 9M83missiles were designed by NPO Novator. TheVsuffix stands forVoyska(ground forces). It was designed to form the top tier army air defence system, providing a defence against ballistic missiles, cruise missiles and aircraft, replacing theSA-4Ganef. The “GLADIATOR” missiles have a maximum engagement range of around 75km (47mi) while the “GIANT” missiles can engage targets out to 100km (62mi) and up to altitudes of around 32km (20mi). In both cases the warhead is around 150kg (330lb).

Radar modes are different and it requires the use of all methods of jamming, while S-300V system works completely passive mode.

While it was created from the same project, hence the common S-300 designation, different priorities resulted in a design quite different from the other versions. The S-300V system is carried ontrackedMT-T transporters, which gives it better cross-country mobility than even the S-300Ps on 8×8 wheeled transporters. It is also somewhat more distributed than the S-300P’s. For example, while both have mechanically-scanning radar for target acquisition (9S15BILL BOARD A), the battery level 9S32GRILL PANhas an autonomous search ability and SARH delegated to illumination radar onTELARs. The early 30N6FLAP LIDon the S-300P handles tracking and illumination, but is not equipped with an autonomous search capability (later upgraded). 9S15 can simultaneously carry out an active search for goals (3 coordinates) and passive (2 position).

Chance to destroy a target by using single missile an interceptor (The official source)

Adopted in service in 1983 (1983 just using the missile 9M83), fully accepted in 1988.

9M83 /Chance/ MGM-52 Lance………. 0,5-0,65

9M82 /Chance/ MGM-31 Pershing…… 0,4-0,6

9M83 /Chance/ aircraft…………………… 0,7-0,9

9M82 /Chance/ SRAM rocket………….. 0,5-0,7

The S-300V places a greater emphasis on the ABM, with the dedicated 9M82 (SA-12BGiant) Anti-Ballistic missile. This missile is larger and only two can be held on each TELAR. It also has a dedicated ABM radar: the 9S19HIGH SCREENphased array radar at battalion level. A typical S-300V battalion is made up out of a target detection and designation unit, a guidance radar and up to 6 TELARs. The detection and designation unit consists of the 9S457-1 command post, a9S15MVor9S15MTBILL BOARDall-round surveillance radar and 9S19M2HIGH SCREENsector surveillance radar.

The S-300V uses the 9S32-1GRILL PANmulti-channel guidance radar. Four types of missile-launcher vehicles can be used with the system:

  • Transporter erector and radar (TELAR) vehicles, which not only transport the missiles, but also fire and guide them (includes radar illumination and targeting as well)). There are two models: the 9A83-1 TELAR holding four 9M83GLADIATORmissiles and the 9A82 TELAR holding two 9M82GIANTmissiles.
  • 9S15M Obzor-3 acquisition radar

    Launcher/loader vehicles (LLV), which transport the missiles and can reload the TELARs, and also fire missiles under the control of a TELAR. There are two models: the 9A84 LLV holding two 9M83 GLADIATOR missiles and the 9A85 LLV holding two 9M82 GIANT missiles.

Target detection range.

  • 9S15M – 10 m² – 330km and 3 m² – 240km.
  • 9S19M2 – 175km (? m2) and two passive electronically scanned array, very high resistance to interference.
  • 9S32M (TELAR 9A82/9A83) range is limited to 200km, can work independently, or target designation from the C-300B, or a variety of other target designation data systems (AWACS aircraft and various ground-based radar). The size of 0.1 square metres (of the target – warhead of a ballistic missile) at ranges up to 140km, and not less than 120. Alogically, 9S32 detection range – MGM-52 Lance 60km, aircraft missiles 80km, fighter or ballistic missileMGM-31 Pershing140km
  • Size of 0.05 square meters at a distance of 30km (aiming system in the rocket (10/3 seconds before the missiles hit the target))in addition, the guidance system inside the rocket, supplements for missile guidance systems on commands from the 9A82 / 9A83 and 9S32, and missile guidance systems to passively on the radar illumination and radiation of 9A82 / 9A83.

S-300V system may be controlled by an upper levelcommand postsystem9S52 Polyana-D4integrating it withBuk missile systeminto a brigade.

China has built its own version of the S-300V calledHQ-18.

S-300VM (SA-23)

TheS-300VM(Antey 2500) is an upgrade to the S-300V. It consists of a new command post vehicle, the 9S457ME and a selection of new radars. These consist of the 9S15M2, 9S15MT2E and9S15MV2Eall-round surveillance radars, and the 9S19ME sector surveillance radar. The upgraded guidance radar has theGrau index9S32ME. The system can still employ up to six TELARs, the 9A84ME launchers (up to 4 × 9M83ME missile) and up to 6 launcher/loader vehicles assigned to each launcher (2 × 9M83ME missile each). An upgraded version, dubbed S-300V4 will be delivered to the Russian army in 2011.

The Antey-2500 complex is the export version developed separately from the S-300 family and has been exported to Venezuela for an estimated export price of 1 billion dollars. The system has one type of missile in two versions, basic and amended with a sustainer stage that doubles the range (up to 200km (120mi), according to other data up to 250km (160mi)) and can simultaneously engage up to 24 aircraft or 16 ballistic targets in various combinations.

  • Became the first system in the world capable of simultaneously engaging cruise missiles, aircraft and ballistic targets. It also contains a private sector radar for countering areas affected by interference.

S-300V4

Also called S-300VMD. Official government data (according to the official statement of the general designer) – S-300V4 – Opportunity is S-400. S-300V4 as compared with the earlier S-300V is actually a new air defense system, created on modern element base. During its development the individual solutions from the previous generation of systems were used, but in general this is a new technique. Only such a system S-300 is used for the Russian Ground Forces (after 2012).

  • Longer than 200km range, the S-300VMD with 300km range.

It is able to destroy the AWACS at a very large distance and thus do not allow others to get the planes targeting while in passive mode.

  • Different versions of theNPO Novator9M82MDS-300V4 missiles have a range of 400km at Mach 7.5 or a range of 350km at Mach 9 and can destroy maneuvering targets even at very high altitudes.Gladiator rockets significantly less.
  • The system is available abroad, 2016 (Antey 4000).

S-400 (SA-21)

TheS-400Triumf(RussianС-400 «Триумф», formerly known as the S-300PMU-3/С-300ПМУ-3, NATO reporting nameSA-21 Growler) was introduced in 1999 and features a new, much larger missile with 2 per TEL. The new complex is totally different. The project has been encountering delays since its original announcement and deployment has only begun on a small scale in 2006. With an engagement range of up to 400km (250mi), depending on the missile variant used, and specifically designed to counterstealth, it is by far the most advanced version incorporating the ability to survivePGMthreats and counteradvanced jammersby usingautomatic frequency hopping.

Specifications

An important quality of all complexes of the family of S-300 is the ability to work in various combinations within a single modification and within the same complex, between the modifications (limited), as well as through a variety of mobile superior command posts to line up in a battery of any composition, quantity, modifications, location and so on including the introduction of other air defence systems into a common battery.[40]the System for the defence of the major industrial and administrative objects, military bases and control points from the shock means of air-space attack of the enemy. Capable of hittingballisticand aerodynamic targets. Became the first multi-channel anti-aircraft missile system, is able to accompany each system (ADMS) to 6 goals and build them up to 12 missiles. When creating funds management (FM), consisting of paragraph combat control and radar detection, solved the problem of automatic track initiation of up to one hundred goals and effective management divisions, located at a distance of 30–40km from the (FM).

For the first time established a system with full automation of combat operation. All tasks—detection, tracking, target setting is considered, target designation, development of target designation, target acquisition, maintenance, capture, tracking and missile guidance, assessment of results of firing system capable of dealing automatically with the help of digital computing facilities. The operator functions are to control over the work of funds and implementation of the launch of rockets. In a complex environment, you can manually intervene in the course of combat operation. None of the previous systems possessed these qualities. Vertical launch missiles provided bombardment of targets flying from any direction without the reversal of the launcher in the direction of the shooting.

Missiles are guided by the 30N6 FLAP LID or naval 3R41 Volna (TOP DOME) radar usingcommand guidancewith terminalsemi-active radar homing. Later versions use the 30N6 FLAP LID B or TOMB STONE radar to guide the missiles via command guidance/seeker-aided ground guidance (SAGG). SAGG is similar to the Patriot’s TVM guidance scheme. The earlier 30N6 FLAP LID A can guide up to four missiles at a time to up to four targets, and can track up to 24 targets at once. The 30N6E FLAP LID B can guide up to two missiles per target to up to six targets simultaneously. Targets flying at up to Mach 2.5 can be successfully engaged or around Mach 8.5 for later models. One missile can be launched every three seconds. The mobile control centre is able to manage up to 12 TELs simultaneously.

The original warhead weighed 100kg (220lb), intermediate warheads weighed 133kg (293lb) and the latest warhead weighs 143kg (315lb). All are equipped with aproximity fuseand contactfuse. The missiles themselves weigh between 1,450 and 1,800kg (3,200 and 3,970lb). Missiles are catapulted clear of the launching tubes before their rocket motor fires, and can accelerate at up to 100g(1km/s²). They launch straight upwards and then tip over towards their target, removing the need to aim the missiles before launch. The missiles are steered with a combination of control fins and throughthrust vectoringvanes. The sections below give exact specifications of the radar and missiles in the different S-300 versions. It should be noted that since the S-300PM most vehicles are interchangeable across variations.

RADAR

The 30N6 FLAP LID A is mounted on a small trailer. The 64N6 BIG BIRD is mounted on a large trailer along with a generator and typically towed with the now familiar 8-wheeled truck. The 76N6 CLAM SHELL (5N66M etc.) is mounted on a large trailer with a mast which is between 24 and 39m (79 and 128ft) tall. Usually is used with a mast. Target detection range of 90km if altitude of the target of 500 meters above the ground (with a mast).

The original S-300P utilises a combination of the 5N66Mcontinuous-wave radarDoppler radarfor target acquisition and the 30N6 FLAP LID A I/J-band phased array digitally steered tracking and engagement radar. Both are mounted on trailers. In addition there is a trailer-mounted command centre and up to twelve trailer-mounted erector/launchers with four missiles each. The S-300PS/PM is similar but uses an upgraded 30N6 tracking and engagement radar with the command post integrated and has truck-mounted TELs.

If employed in an anti-ballistic missile or anti-cruise missile role, the 64N6 BIG BIRD E/F-band radar would also be included with the battery. It is capable of detecting ballistic missile class targets up to 1,000km (620mi) away travelling at up to 10,000km/h (6,200mph) and cruise missile class targets up to 300km (190mi) away. It also employs electronic beam steering and performs a scan once every twelve seconds.

The 36D6 TIN SHIELD radar can also be used to augment the S-300 system to provide earlier target detection than the FLAP LID radar allows. It can detect a missile-sized target flying at an altitude of 60 metres (200ft) at least 20km (12mi) away, at an altitude of 100m (330ft) at least 30km (19mi) away, and at high altitude up to 175km (109mi) away. In addition a 64N6 BIG BIRD E/F band target acquisition radar can be used which has a maximum detection range of 300km (190mi).

The S-300 FC Radar Flap Lid can be mounted on a standard pylon.

Surveillance radar
GRAU indexNATO reporting nameSpecialisationTarget detection rangeSimultaneously detected targetsNATO frequency bandFirst used withNotes
36D6TIN SHIELD180–360km (110–220mi)120E/FS-300PIndustrial designation: ST-68UM
350kW to 1.23 MW signal strength
76N6CLAM SHELLLow altitude detectionIS-300P
76N6CLAM SHELLLow altitude detection120km (75mi)180IS-300PMU1.4kWFMcontinuous wave
64N6BIG BIRDRegiment radar300km (190mi)300CS-300PMU-1
96L6ECHEESE BOARDAll altitude detection300km100S-300PMU-1
9S15BILL BOARD250km (160mi)250SS-300V
9S19HIGH SCREENSector tracking16S-300V
MR-75TOP STEERNaval300kmD/ES-300F
MR-800 VoskhodTOP PAIRNaval200km (120mi)C/D/E/FS-300F

Target tracking/missile guidance
GRAU indexNATO reporting nameNATO frequency bandTarget detection rangeSimultaneously tracked targetsSimultaneously engaged targetsFirst used withNotes
30N6FLAP LID AI/J44S-300P
30N6E(1)FLAP LID BH-J200km (120mi)66S-300PMUPhased array
30N6E2FLAP LID BI/J200km66S-300PMU-2
9S32-1GRILL PANMulti-band140–150km (87–93mi)66S-300V
3R41 VolnaTOP DOMEI/J100km (62mi)S-300F

Extrasystemic Radar (greater effectiveness)

Compared. C-300 its own listed above. Includes powerful 91N6E Anti – stealth range 150,RCS 4scm 390km, 0.4 m2 for 240km.

Extrasystemic Radar multiply ability. Approximately 4-fold.

  • Anti – stealth: Protivnik-GE, Gamma-DE UHF radar 0.1 m2 for 240km
  • United against all targets “Niobium” RLS (not excluding ballistic or stealth). Mobility 5 minutes. Frequency band S and UHF. Detection range of 600km (1 sqm to 430km), the target speed of 8000km / h, 4791 miles, Mach 6.35. For detection, the owner of the state to transfer command of targeting items (in this application, the maximum speed grows from subordinates systems).Stealth. Quote – However, U.S. Air Force officials were dismissive of the technique. “Just because something is technically possible doesn’t make it tactically feasible,” one Air Force official with extensive stealth aircraft experience explained. All locators “Nebo” family have a double for the army air defence.

Missiles

Missile specifications
GRAU indexYearRangeMaximum velocityMaximum target SpeedLengthDiameterWeightWarheadGuidanceFirst used with
5V55K/ 5V55R1978/198247km (29mi) 75km1,700m/s (3,800mph)1,150m/s (2,572mph)7m (23ft)450mm1,450kg (3,200lb)100kg (220lb)Command
5V55R/5V55KDafter 198275/90km (/56mile)1,700m/s (3,800mph)1,150m/s (2,572mph)7m (23ft)450mm1,450kg (3,200lb)133kg (293lb)SARH
5V55U1992150km (93mi)2,000m/s (4,470mph)7m (23ft)450mm1,470kg (3,240lb)133kg (293lb)SARH
48N6accepted on arms 1993[55]150km (93mi)2,000m/s (4,470mph)2,800m/s (6,415mph)7.5m (25ft)500mm1,780kg (3,920lb)≈150kg (330lb)Track-via-missile(TVM)
48N6E21992195km (121mi)2,000m/s (4,470mph)2,800m/s (6,415mph)7.5m (25ft)500mm1,800kg (4,000lb)150kg (330lb)TVM
9M82198413–100km (8.1–62.1mi)
30km (98,000ft) alt
2,400m/s (5,400mph)420kg (930lb)150kg (330lb)SARHby TELARS-300V
9M8319846–75km (3.7–46.6mi)
25km (82,000ft) alt
1,700m/s (3,800mph)150kg (330lb)SARHby TELARS-300V
9M83ME1990200km (120mi)SARHby TELARS-300VM
9M96E1199940km (25mi)900m/s(2,010mph)4,800–5,000m/s
(10,737–11,185mph)
330kg (730lb)24kg (53lb)Active radar homingS-400
9M96E21999120km (75mi)1,000m/s(2,240mph)4,800–5,000m/s
(10,737–11,185mph)
420kg (930lb)24kg (53lb)Active Radar HomingS-400
40N62000400km (250mi)Active Radar HomingS-400

Means of camouflage and protection

  • Masking components of S-300 systems are used in full-scale inflatable layouts,equipped with additional devices simulation of electromagnetic radiation in the infrared, optical and radar,(photo shoot 1,photo shoot 2).

Can also use other means of masking, like camouflage nets and placement of the components of C-300 in the trenches that considerably complicates the detection from long range. Station interference with radar enemy, SPN-30, Veil-1.

  • Protection. Additional elements of protection is the placement of components of C-300 in the trenches (practiced as placing on the hills for a better view and more rapid care of the horizon, and in the trenches for stealth and protection against fragments of explosions),photo shoot 1,photo shoot 2.

Composite element to counter the radar missile program is for S-300 system Paperboy-E,the likelihood of intercepting missiles PIS type of HARM is 0.85 for missiles with active radar-guided, heat or body-managed system pointing the probability of interception of 0.85–0.99. Under the interception perceived inability of the object to cause harm because of his hit miss the target.

Comparison with other systems

Official designation of unitS-300PMUS-300PMU1S-300PMU2S-300VM/S-300V4Patriot PAC-2Patriot PAC-3
Range of,
km
aerodynamic target5–905–1503–200200 (400)3–9615, at most 20/ 0.3-20
ballistic targetsat most 35at most 405–40402015–45(20)possible max 50
Height defeat,
km
aerodynamic target0.025–270.01–270.01–270.025–30 /?-370.06–2415
ballistic targets(?)(?)2–251–303–1215(?).15, possible max 20.
Maximum target speed, m/s1,150, at most 1,300 (for the escort 3000)at most 2,800 (for the escort 10000)at most 2,8004,500 of ballistic targetsat most 2,200at most 1,600
Maximum speed of the rocket complex, m/sat most 2,00020001,9002,600 and 1,700/7.5M or 9M (more 3000) and (?)1,700(?) approximately 1,500
Number of simultaneously guided anti-aircraft missiles by one unitat most 12at most 12at most 72at most 48at most 9
Number of simultaneously engaged targets by one unitat most 6at most 6at most 36at most 24at most 9at most 9
Mass of a rocket, kg1,400–1,600(?)330–1,900(?)900312
Warhead weight, kg150(?)180(?)9174
Minimum time between missile launches, seconds3–53–53 (0 at start from differentCARRIERS MISSILES)1.5 (0 at start from differentCARRIERS MISSILES)3–4 (1at start from differentCARRIERS MISSILES)(?)
The set up time and clotting time of startingcomplex, mins555515/3015/30(?)
Means of transportationWheeledWheeledWheeledCATERPILLARsemi trailersemi trailer

Combat history

The system has put in strong performances in real-world exercises.In 1991, 1992 and 1993, various versions of the S-300 had successfully destroyed ballistic missiles and other objects in exercises, with a high success rate (90% or more if 1 missile interceptor is used).In 1995, it was the first system in the world to successfully destroy aR-17 ElbrusScud missile in the air.

China is to test the S-300PMU2 effectiveness in destroying targets in real exercises. This UAV (4.6km) and simulator a strategic bomber aircraft (186km), tactical missile (range of the system to the point of interception 34km and a height of 17.7km) and also against pinpoint missile. Although none of the S-300 versions have fired a missile in a conflict, it is considered a very capable SAM system that poses a significant hazard even to the most advanced aircraft or other airborne targets. In April 2005,NATOhad a combat exercise in France and Germany calledTrial Hammer 05to practiceSuppression of Enemy Air Defensesmissions.

Participating countries were pleased that theSlovak Air Forcebrought a S-300PMU along, providing a unique opportunity for NATO to become familiar with the system.

Israel’s purchase ofF-35 Lightning IIfighters was allegedly motivated in part to nullify the threat of S-300 missiles that were, at the time the fighters were initially sought, subject to a potential arms sale to Iran.

The system can destroy ground targets at a range of 120km (19,000 fragments or 36,000 according to various missiles). If the S-300 missiles are launched against ballistic missile launched, the range reaches up to 400km.

In 2010, Russia announced that its military had deployed the S-300 systems in breakawayAbkhaziain 2008, leading to condemnation from the government ofGeorgia.

After a RussianSukhoi Su-24wasshot down over Syria in November 2015, Russia deployed S-300 and S-400 to the region – some to theKhmeimim Air Base, some with theRussian cruiserMoskva.

Operators and other versions

The S-300 is mainly used in Eastern Europe and Asia although sources are inconsistent about which countries possess the system.

– Algeria– 4/8 Regiments of S-300PMU2 were ordered in 2006

– Armenia– S-300PS (SA-10)

– Azerbaijanbought two S-300PMU-2/SA-20B SAM battalions in 2010

– Belarus– S-300PS systems delivered from Russia in 2007 to replace older S-300 model in Belarusian inventory.Four divisions of S-300 missiles to be delivered in 2014.

– Bulgaria– ten S-300 launchers, divided into two units with five launchers each.

– People’s Republic of China– China was the first customer of S-300PMU-2. China also built theHQ-15with the maximum range upgraded from 150 to 200km (93 to 124mi). The total number of the S-300PMU/1/2 and HQ-15/18 batteries in PLA are approximately 40 and 60 respectively, as of 2008. The total number of the missiles is well above 1,600, with about 300 launcher platforms.[95]Five such SAM battalions are deployed and in active duty around Beijing region, six battalions in Taiwan strait region and the rest in major cities like Shanghai, Chengdu and Dalian. Two Rif (SA-N-6) systems were purchased in 2002 for the Chinese Navy for the Type 051C destroyers. By 2011, it had obtained 15 battalions (4 systems) S-300PMU-2.

– Egypt– The S-300VM “Antey-2500” missile system was ordered in 2014, as part of a multi-billion Egyptian-Russian arms deal signed later that year.[97][98]The $1 billion contract comprises 4 batteries, a command post and other external elements.[99][100]In 2015, Russia started delivering the system components, Egyptian soldiers began their training in Russian training centers.[101]By the end of 2017, all batteries were delivered to Egypt.[102]Russia is in talks with Egypt on the delivery of additional Antey-2500 systems.[103]
Greece – S-300 PMU1 system acquired after theCyprus Missile Crisisand operated byHAFonCreteconsisting of 1 Battallions/4 batteries/16 launchers / 80 missiles. Greece first fired an S-300 during the White Eagle 2013 military exercise, which was the first time it was used since it had been bought 14 years earlier.

IndiaS-300air defence platforms (from Russia).

Iran– Originally purchased in 2007, Iran’s S-300 order was blocked until April 2015 when the Kremlin lifted its self-imposed ban on the sale due to international lifting of some sanctions against Iran. The country purchased and received an unknown number of S-300 (probably the S-300PMU2 system, a modified version of the S-300PMU1) in 2016, it was fully tested and implemented in 2017. Iran received four S-300PMU2 batteries from Russia in 2016, each consisting of a 96L6E target acquisition radar, a 30N6E2 target engagement radar, and four 5P85TE2 towed transporter-erector-launchers (TELs).These systems are supported by two 64N6E2 battle management radars and linked using FL-95 antenna masts. Iran also owns an unknown number of a domestically producedBavar 373, developed before the arrival of Russian S-300 system.

– Kazakhstan– 10 battalions after the refurbishment (PS – version)(2009 or later), 5 free of charge (2014), and 5 free of charge (2015)

– North Korea (?)

– Russia– All variations. Russian Air Defence Forces, (part of theRussian Air Force), /(1900 (S-300PT/PS/PMU, 200 S-300V/S-300V1 in 2010 year)) 2000 in total launchers. All production in 1994 (actually 1990) or older, all the complexes S-300PM have been repairing and upgrading (Favorite-S). S-300P/PT have been retired before 2008, some S-300PS in service, but were to be retired in 2012–2013
Modernization of all version S-300P to the version S-300PM1 was to end in 2014. Resource of each taken increased by 5 years. PM 1 continued to version PM 2. By 2015 S-300V4 was to have been delivered. Modernization of all S-300V to the version S-300V4 was to end in 2012.

– Slovakia– One battery S-300PMU and 48 missiles type 5V55R inherited from Czechoslovakia. 3 missiles were fired during exercise in Bulgaria in 2015.

– Syria– Own, official government data – there in 2013 (literally – the individual components are placed), a total of 6 was ordered, 1 (V family) has been sold in Egypt.[a]A battery of Russian S-300V4 air defense missile launchers has been transported to Syria, Russia’s Defense Ministry said in a statement. Its stated purpose is to defend a Russian naval base and warships.[130]Following thedowning of Russian Il-20 aircraftin Syria in September 2018, for which Russia held Israel responsible, defense minister Sergei Shoigu on 24 September said that within two weeks, the Syrian army would receive S-300 systems, precise modification was not specified.

– Ukraine– S-300PS, S-300PMU, S-300V and others.[136]Only six systems have been repaired since 2004; as a result only 40% of Ukrainian S-300 systems were in good condition prior to 2014. Thecrisis with Russiaresulted in a program of accelerated modernisation, with at least 4 batteries overhauled in the period 2014-15. 34 launchers remained in theCrimeaafter its2014 annexation by Russia.

– Venezuela– Ordered 2 battalions ofS-300VM“Antey-2500”, delivered in May 2012.

– Vietnam– Bought two S-300PMU-1 for nearly $300 million and RLS 96L6 after 2009. Bought S-300 PMU-2 in 2012.
Former operators

– Czechoslovakia– One battalion created in 1990. Passed to Slovakia in 1993.

– East Germany– Passed on to West German Army.

– Germany– Retired after re-unification.

– Georgia

– Moldova

– Turkmenistan

– United States– S-300P purchased from Belarus (1994). The system was devoid of electronics.[145]S300V was purchased in Russia officially in the 1990s[clarification needed](complete set (except for 9S32 GRILL PAN multi-channel guidance radar)).[146][147]Also acquired from Croatia.– UzbekistanCancelled

– Cyprus– S-300 PMU1 system transferred to Greece after theCyprus Missile Crisisand operated byHAFonCrete.

SAM SIMULATOR

https://sites.google.com/site/samsimulator1972/home

________________________________________________________________

Pubblicazione gratuita di libera circolazione. Gli Autori non sono soggetti a compensi per le loro opere. Se per errore qualche testo o immagine fosse pubblicato in via inappropriata chiediamo agli Autori di segnalarci il fatto è provvederemo alla sua cancellazione dal sito

S-300 / SA-10 Grumble - Military History (2024)

References

Top Articles
Latest Posts
Article information

Author: Nathanial Hackett

Last Updated:

Views: 5892

Rating: 4.1 / 5 (52 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Nathanial Hackett

Birthday: 1997-10-09

Address: Apt. 935 264 Abshire Canyon, South Nerissachester, NM 01800

Phone: +9752624861224

Job: Forward Technology Assistant

Hobby: Listening to music, Shopping, Vacation, Baton twirling, Flower arranging, Blacksmithing, Do it yourself

Introduction: My name is Nathanial Hackett, I am a lovely, curious, smiling, lively, thoughtful, courageous, lively person who loves writing and wants to share my knowledge and understanding with you.